Proton Irradiation Site for High-Homogeneity Radiation Hardness Tests of Silicon Detectors at the Bonn Isochronous Cyclotron

> Dennis Sauerland¹, R. Beck¹, J. Dingfelder², P.-D. Eversheim¹, P. Wolf²

> > December 5th, 2022

⊠ sauerland@hiskp.uni-bonn.de

¹Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), University of Bonn ²Silizium Labor Bonn (SiLab), Physikalisches Institut, University of Bonn

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn - Cyclotron

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn - Proton Beam Line

Irradiation Site

Irradiation Site

Irradiation Site - Beam Monitor

Irradiation Site - Beam Monitor

Irradiation Site - Beam Monitor (SEM)

Irradiation Site - Beam Monitor (SEM)

• Use carbon-coated Al foils (≈ 70 nm layer thickness) to anticipate foil-carbonization with time.

Irradiation Site - Beam Monitor (SEM)

• Use carbon-coated Al foils (≈ 70 nm layer thickness) to anticipate foil-carbonization with time.

Irradiation Site - Beam Monitor (BLM)

Irradiation Site - Beam Monitor (BLM)

- Charge collection efficiency of internal FARADAY cup: > 99 %
- Isolator electrode prevents secondary electrons from exit window to reach BLM.

• Charge collection efficiency of FARADAY cup: > 99.99 %, $\left(\frac{I_{\text{loss}}}{I} \approx 8 \cdot 10^{-5}\right)$

Irradiation Site - Beam Monitor Calibration

Irradiation Site - Chromox Screen

Irradiation Site - Irradiation Procedure

Irradiation Results and Error Estimation

Scan Area:

Example: Irradiation of LFoundry Monopix2 with aim fluence of $2.5\cdot 10^{14}$ protons cm $^{-2}$

Irradiation Results and Error Estimation

Scan Area:

Example: Irradiation of LFoundry Monopix2 with aim fluence of $2.5\cdot10^{14}$ protons cm $^{-2}$ Result: $(2.52\pm0.07)\cdot10^{14}$ protons cm $^{-2}$

DUT:

Summary & Outlook

Summary

- Modern irradiation site
 - Beam monitor for continous measurement of beam current, -position and beam cut-off
 - ► FARADAY cup with low SE losses for beam monitor calibration
 - Autonomous beam-driven irradiation technique based on real-time beam parameters
- Successful irradiation of DUTs with this setup since 2021:
 - ATLAS ITk PixV1.1
 - LF-Monopix2
 - TJ-Monopix2 chip (Belle-II candidate)
 - ATLASPix3 (LHCb candidate)
 - ► ...

mostly through *internal* collaboration members.

Outlook

- Continuous improvement of irrad_control (features, usability, ...)
- Comparison of our irradiation technique with well-known foil activation method
- Open up the irradiation facility to *external* research groups.

irrad_control software: • https://github.com/cyclotron-bonn/irrad_control

Appendix: Pictures

Appendix: Pictures

Appendix: Pictures

Appendix: Cyclotron Parameter

providable ions	p, d, α ,, ¹⁶ O ⁶⁺
energy $(h = 3, Q/A \ge \frac{1}{2})$	7 to 14 MeV/A
beam current (ext.)	\lesssim 1 μ A
injection / extraction radius	38 mm / 910 mm
number of revolutions	approx. 120
hill sectors	3 × 40°, 0° spiral angle
hill / valley field strength	1.9 / 0.7 T (max.)
flutter	0.62
dees	3 × 40°, 40 kV (max.)
cyclotron harmonic h	3, 9
rf frequency v_{rf}	20.1 to 28.5 MHz
hor. / vert. emittance	16 / 22 mm mrad
relative energy width	4×10^{-3}

Appendix: Irradiation Site Parameter

used ion	proton (typ.)
beam energy	7MeV bis $14MeV$
beam current	$20{ m nA}$ to $1{ m \mu A}$
beam width	$\approx 6 \text{ mm FWHM}$
DUT area	$19 \times 11 \mathrm{cm}^2 \mathrm{(max.)}$
DUT thickness at $14{ m MeV}$	300 μm
DUT temperature	-40° C (min.), -20° C (typ.)
NIEL per scan	$5 \cdot 10^{11} n_{eq} cm^{-2}$ (min.) to $10^{14} n_{eq} cm^{-2}$ (max.)
NIEL/TID	$10^{11} n_{ m eq} { m cm}^{-2}$ per MGy
Hardness factor κ	4.1(6)

Appendix: High Current Site

