

DEVELOPMENT STATUS OF A PROTON IRRADIATION SITE AT BONN UNIVERSITY

<u>P. Wolf^{1*}</u>, D. Eversheim², D.-L. Pohl¹, M. Urban², N. Wermes¹ 33rd RD50 Workshop CERN, 26.11.2018

¹Physikalisches Institut ²Helmholtz Institut für Strahlen- und Kernphysik (HISKP)

*wolf@physik.uni-bonn.de

OUTLINE

- The isochronous cyclotron Bonn at HISKP
 - Specifications, setup site & common isotopes for proton irradiation
- Beam current monitoring:
 - Custom-made secondary electron monitors (SEMs) and readout (RO) electronics
 - Proof of concept
- GEANT4 energy distribution simulations
- Proton hardness factor estimations and planned measurements
- Foreseen irradiation parameters

THE HISKP ISOCHRONOUS CYCLOTRON -SPECIFICATIONS-

- ECR¹ ion source:
 - Protons, Deuterons, Alphas... up to ¹²C
- E_{kin} from 7 MeV to 14 Mev per nucleon
- Proton beam:
 - Currents from few **nA** to 1 **μA**
 - Gaussian, 1 mm \leq FWHM \leq 2 cm
 - Flux(1 μ A) \approx 6x10¹² s⁻¹ cm⁻²

¹Electron-Cyclotron-Resonance

- Overview of cyclotron hall
 - Multilple beam lines and extractions
 - Irradiation site located at highcurrent room behind A4 magnet
 - Additional PC setup possible in cyclotron control room or at site, but:
 - Setup located at site during beam has to be released by radiation protection officer

-SETUP SITE-

- Easily accessible setup, free space
- Two extraction lines under 15° and 39°
 - FWHM_{Max}(15°) ≈ 2 cm; FWHM_{Max}(39°) ≈ 1 cm

-SETUP SITE-

- Easily accessible setup, free space
- Two extraction lines under 15° and 39°
 - FWHM_{Max}(15°) ≈ 2 cm; FWHM_{Max}(39°) ≈ 1 cm
- Custom setup table:
 - supports load \leq 200 kg
 - Rotating mounting plate, slides along beam axis allow positioning close to extraction
 - Integrated RO electronics stack

THE HISKP ISOCHRONOUS CYCLOTRON -COMMON ISOTOPES-

- Uncontrolled irradiation of broken chip to probe activity:
 - − 14 MeV protons, $φ \approx$ 2e15 p/cm², **no** scanning or shielding
- Gamma-spectroscopy² identifies long-lived isotopes:
 - − 65 Zn from 65 Cu (σ ≈ 600 mb)³ , T_{1/2}≈244d
 - − ⁴⁸V from ⁴⁸Ti ($\sigma \approx 500$ mb)³, T_{1/2}≈16d
 - − ⁷Be from ¹⁴N ($\sigma \approx 10$ mb)³, T_{1/2}≈53d
- Estimated time for release from radiation protection after irradiation date: **1-2 weeks**

 2 Gamma-Spectroscopy performed approx. 1 month post irradiation 3 14 MeV protons from http://www.oecd-nea.org/janisweb/

BEAM CURRENT MONITORING

BEAM CURRENT MONITORING -SECONDARY-ELECTRON-MONITOR (SEM)-

- Motivation: Use integrated beam current for **proton fluence calculation**
- SEM consists of two pairs of thin, segmented foils (AI, C), penetraded by beam:
 - ΔE to $e^- => \lambda_{mean}$ sufficient for e^- at foil surfaces to transit to vaccum with $E_{kin} \approx 10 \text{ eV}$
 - e⁻ captured by HV rings => foils positive w.r.t. GND
 - Secondary current $I_{\text{SEM}} = \text{const} \cdot I_{\text{Beam}}$ from foils to GND
 - Each foil independent **RO channel:** L, R, O, U
 - Segmentation gives **position information**
- Allows on-line beam-current & position monitoring

BEAM CURRENT MONITORING -SEMs & READOUT ELECTRONICS-

- Secondary current range: $nA \le I_{SEM} \le \mu A$
 - Custom RO electronics developed and tested
 - Conversion & projection of I_{SEM} to **0 5** V
 - Selectable resolutions from 3 nA to $1 \mu A$
 - Approx. 1% uncertainty on I_{SEM} measurement

Readout via
 RPi & 8-Ch.
 ADDA board

Rpi+ADDA board RO Electronics

BEAM CURRENT MONITORING -PROOF OF CONCEPT-

=> Calibration between beam- & SEM current needed!

- Measure beam current destructively while measuring SEM current
- Find correlation parameters

BEAM CURRENT MONITORING -PROOF OF CONCEPT-

- First calibration could be done & correlation _ between I_{SEM} and I_{BEAM} could be verified!
- **Proof of concept** in worst-case-scenario:
 - Unstable, noisy beam due to violent shutdown of ECR-ion source
- Several calibrations needed to verify repeatability
- Errors are expected to be reduced significantly under normal conditions

GEANT4 ENERGY SIMULATIONS & PROTON HARDNESS FACTOR

GEANT4 ENERGY SIMULATIONS -PROTONS-

- 10⁷ protons with 14 MeV along beam line
- Energy distributions on and after 300 μm Si-sensor
- Hardness factor
 - κ≈ 3 4 (?)
 - (Slight) dependence of damage function on penetration depth (?)

HARDNESS FACTOR -PROTONS-

- Large spread of literature values for proton hardness factors
- KIT κ=2
- HISKP κ≈ 3 **?**
- Proton hardness factor should be measured to reduce uncertainty on resulting φ_{eq}

Use commercial
 PiN-diode BPW34FS

- Forward voltage drop V_F shows linear dependance on ϕ_{eq} [4]
- Irradiate matrices of 3x3 diodes to different fluences
- Compare results to [4]
- Repeat for **deuterons** ?

10¹²

 Φ_{eq} (cm⁻²)

10¹³

 10^{14}

10¹⁵

HARDNESS FACTOR

^[4] F. Ravotti, Development and Characterization of Radiation Monitoring Sensors for the High Energy Physics Experiments of the CERN LHC Accelerator, Dissertation, Université Montpellier II, 2006 (PhD Thesis)

10¹⁰

10¹¹

. 10⁹ 10^{16}

Plot from [4], p. 124

IRRADIATION PARAMETERS

IRRADIATION PARAMETERS -FORESEEN PARAMETERS-

- Generally based on irradiation site & procedure at KIT
- Cooling with N₂-gas inside insulated box (to \approx -40 °C)
- Shielding of carrier PCB with aluminum mask in box
- All dimensions for "standard" 10x10 cm² PCBs. Slightly larger devices might be possible as well as powering chips
- Box, mounted onto XY-stage, scanned through beam in grid
- Stopping & resuming of irradiation possible
- Access to the irradiation site during stops possible

IRRADIATION PARAMETERS -FORESEEN PARAMETERS-

- Irradiations up to $10^{16} \frac{\text{n.e.q}}{\text{cm}^2}$ approx. possible within 60 min
- Equivalent fluence determination by integration of monitored proton current
- After irradiation sample stays in cooling box for several hours due to activation
- Storage in freezer at -20°C until release by radiation protection officer
- Release within 2 weeks estimated

SUMMARY & OUTLOOK

- The development status of a novel proton irradiation site has been presented
 - 14 MeV protons with a hardness factor of κ≈ 3 can be generated with beam currents of up to ≈ 1 μA at the HISKP cyclotron
 - Beam-current and -position monitoring as well as resulting proton fluence determination via secondary electron monitors and custom RO electronics
 - First calibrations verify principle
- Next steps:
 - Completing setup: Mount remaining hardware & implement irradiation procedure
 - First controlled (cooling, scanning, shielding) irradiation within next months
 - Irradiation of diodes in order to determine proton (& **deuteron**) hardness factors

THANK YOU

BACKUP

UNIVERSITÄT BONN THE HISKP ISOCHRONOUS CYCLOTRON -BEAM WIDTH EVOLUTION-

UNIVERSITÄT BONN THE HISKP ISOCHRONOUS CYCLOTRON -BEAM WIDTH EVOLUTION-

UNIVERSITÄT BONN THE HISKP ISOCHRONOUS CYCLOTRON -BEAM WIDTH EVOLUTION-

BEAM CURRENT MONITORING -PRECISION-

- Testing of electronics with sourced currents:
 - Source into different channels:
 L, R, O , U
- Deviation between sourced current and output ≈ 1 %

BEAM CURRENT MONITORING -PRECISION-

- Testing of electronics with sourced currents:
 - Source into different channels:
 L, R, O , U
- Deviation between sourced current and output ≈ 1 %

BEAM CURRENT CALIBRATION

- Beam currents up to 1 μA validated
- Linear trend expected, but:
 - Large spread of distribution, noise
- Second measurement shows the same, ₃ but similar slopes of fit (~5% deviation) ≥
- Reason: noisy, unstable beam due to violent system shutdown by PSA; significantly less noise in normal operation

GEANT4 ENERGY SIMULATIONS -DEUTERONS-

- 10⁷ deuterons with 28 MeV along HISKP beam line
- Energy distributions on and after 300 μm Sisensor
- Hardness factor
 - κ = **?**

RADIATION PROTECTION / RELEASE

- "StrlSchV" §29 contains parameter tables for unrestricted releases, but:
 - They only apply to samples between 3 kg to 3 t
- For our case:

The additional **effective dose** imposed to an **individual person** must be below the order of $10 \mu Sv/year$ in a **realistic** scenario

- Parameters of a realistic scenario:
 - Year = 2000 h (work year)
 - Distance to sample = 50 cm (working dist.)

RADIATION PROTECTION / RELEASE

• Spectroscopy results of irradiated FE-I4 SCC:

²Over-estimation with constant activity over time

GAMMA SPECTROSCOPY

• Available on GitHub:

https://github.com/SiLab-Bonn/ irrad_spectroscopy

- Extensive examples
- Unittest

=> Feel free to contribute

Silicon Lab Bonn, Detector Physics Group O University of Bonn, Germany O http://siliconlab.physik	uni-bonn.de/	
Find a repository	Type: All -	Language: All -
irrad_spectroscopy Gamma-spectroscopy of irradiated samples radioactivity isotopes spectroscopy gamma-spectroscopy	۸	Top languages Python C++ Verilog JavaScript
● Python 🦺 MIT Updated 12 hours ago		Most used topics Manage
fe65_p2 DAQ for FE65P2 prototype ● Puthon ★2 ¥3 ★b CPL-20 Undated 9 days and		attas cern tei4 python telescope
		People 26 >
Python Updated 9 days ago	۸۸	Ÿ <u>№</u> £⊞ <u>№</u> Ծ≚☆X
PyBAR Bonn ATLAS Readout in Python - A readout software for FEI4 pixel	mm	

sts BSD-3-Clause Updated 13 days ago

Python