

DEVELOPMENT OF A PROTON IRRADIATION SITE AT BONN UNIVERSITY

<u>P. Wolf</u>^{1*}, W.Dietsche¹, D. Eversheim², Philipp Hoffmeister², D.-L. Pohl¹, M. Urban², N. Wermes¹

DPG Frühjahrstagung 2019, Aachen

¹Physikalisches Institut ²Helmholtz Institut für Strahlen- und Kernphysik (HISKP)

*wolf@physik.uni-bonn.de

MOTIVATION -HL-LHC-

MOTIVATION -HL-LHC-

- Estimated radiation levels for ITK after 3000 fb⁻¹ scaled to 1-MeV neutron equivalent fluence n_{eq}:
 - Pixels @ 4 cm \approx 1.5 x 10¹⁶ n_{eq}/cm²
- Si-sensors suffer from radiation damage:
 - + Leakage current (+ Noise)
 - Sensitive volume (- Signal)
 - + Trapping (- Signal)
- <u>Radiation damage studies needed to test</u>
 <u>prototypes</u> → Irradiation facilities needed

P. S. Miyagawa and I. Dawson, "Radiation background studies for the phase ii inner tracker upgrade," CERN, Tech. Rep. ATL-UPGRADE-PUB-2014-003, Sep. 2014.

- Eelectron-Cyclotron-Resonance ion source:
 - Protons, Deuterons, Alphas... up to ¹²C
- E_{kin} from 7 MeV to 14 Mev per nucleon
- Proton beam:
 - Currents from few **nA** to 1 **µA**
 - Gaussian, 1 mm \leq FWHM \leq 2 cm
 - Flux(1 μ A) \approx 6x10¹² s⁻¹ cm⁻²

THE BONN ISOCHRONOUS CYCLOTRON -SETUP SITE-

- Overview of cyclotron hall
 - Multilple beam lines and extractions
 - Irradiation site located at high-current room behind A4 magnet
 - Entire cyclotron hall is control area with regard to radiation protection

https://www.zyklotron.hiskp.unibonn.de/zyklo/technik/technik.html

THE IRRADIATION SITE

- Three extraction lines under 0°, 15° and 39° w.r.t beamline for e.g. different particles:
 - FWHM_{Max}(15°) ≈ 2 cm
 - FWHM_{Max}(39°) ≈ 1 cm
- Console table for RO electronics + support
- Aluminium profile setup table:
 - load \leq 200 kg, flexible position
 - Rotating mounting plate, slides along beam axis
 - Mount for XY-Stage + cooling box

THE IRRADIATION SITE -SETUP-

Setup in irradiation position. Cooling box to prevent self-heating and annealing effects. Liquid N₂-reservoir for gas cooling and respective gas cylinder Overview of high-current room

BEAM CURRENT MONITORING -SECONDARY-ELECTRON-MONITOR (SEM)-

- Motivation: proton fluence φ_n
- Two pairs of thin, segmented foils (C)
- Beam penetration releases e
- e⁻ captured by HV
- Secondary current I_{SEM} = const · I_{Beam}
- Each foil independent **RO channel:** L, R, U, D
- Segmentation gives **position information**
- Allows online beam-current & -position monitoring

BEAM CURRENT MONITORING -CUSTOM READOUT ELECTRONICS-

• Input current is projected to **0** – **5** V:

$$U_{OUT} = \frac{I_{IN}}{R_{FS}} \cdot 5 V \quad \Leftrightarrow \quad I_{IN} = \frac{U_{OUT}}{5 V} \cdot R_{FS}$$

with R_{FS} = **full-scale (5V) current resolution** of RO electronics: $R_{FS} \in \{3.3, 10, 33, 100, 330, 1000\}$ nA

- Calibration of SEM current to beam current needed:
 - Correlate U_{Σ} of SEM to I_{beam} :

$$\begin{split} \mathrm{I}_{Beam} \left(\mathrm{U}_{\Sigma} \right) &= \lambda_{\Sigma} \cdot \mathrm{R}_{FS} \cdot \mathrm{U}_{\Sigma} \\ \text{with} \quad \lambda_{\Sigma} &= (\mathbf{853.48} \pm \mathbf{10.96}) \times \mathbf{10^{-3}} \frac{\mathbf{1}}{\mathrm{V}} \end{split}$$

UNIVERSITÄT BONN

IRRADIATION PROCEDURE

- Proton fluence ϕ
- $\phi_{\rm p} = \frac{\rm I_{\rm p} \cdot t}{\rm e \cdot A}$
- By scanning in equidistant rows with width Δy and constant speed v_x, the fluence per complete scan over A can be rewritten:

$$\phi_{\rm p} = \frac{I_{\rm p}}{{\rm e}\cdot {\rm v_x}\cdot \Delta {\rm y}}$$

- For $I_p = 1 \mu A$, $v_x = 100 \text{ mm/s}$ and $\Delta y = 1 \text{ mm}$, a proton fluence of $\phi_p \approx 6 \times 10^{12} \text{ p/cm}^2$ is generated per scan
- Irradiation of 2 cm² device up to 5x10¹⁵ neq anticipated within 60 minutes

IRRADIATION PROCEDURE -FIRST IRRADIATION-

• Irradiation of 25 PiN-diodes (BPW34F) to 5 different fluences in order to measure hardness factor $\kappa = \alpha_{exp}/\alpha_{neq}$ via: $\Delta I = \alpha \cdot V \cdot \Phi_{neq}$

Setup Control Moni	tor					
SEM_C						
Raw Beam Fluence	e					
Show curve(s):						
⊽ Ali	v hist	✓ hist_points	🗹 his	t_errors	🔽 mean	
FluenceHist						
						1e+13
30+12	42-00 (7 07E 10 4 74E+10) protons (cm 02	And a state of the local division of the loc		Moan: (0.21E) 12	1 425+11) pog / cm/	
hist_point						2
hist_error						8e+12
						2.2
5 2e+12						6e+12 5
SHCE						ence
Online monitor showing fluence per						
1e+12						
scanned row						
						20112
0	4 6 8 10 17	14 16 1	8 20 22	24 26	28 30 3	2 34 0
		Scan ro	w			
Loo ® DAD Info						
2019-03-12 16:39:31,446 +11) protons / cm^2	- INFO - Fluence row 9: (3.06E+12 +- 2.03E *	SEM C				
2019-03-12 16:39:32,851 2019-03-12 16:39:32,851	- INFO - INFO - INFO - Eluence row 10: (3.06E+12 +- 1.45E	Data rate: 18 90 Hz	Averages: 300	Beam curren	t- Unit- ⊛ V	Digits: 3
+11) protons / cm^2	- INFO - FIGERCE TOW 10. (3.00EF12 +- 1.45E	Sampling rate: 100 sps	5V full-scale: 0.33	3 21 nA		Refresh every 1.0 s
2019-03-12 16:39:34,257	- INFO - INFO - INFO - Fluence row 11: (3.10E+12 +- 1.41E	Left / V	Right / V	Up / V	Down / V	Sum / V
+11) protons / cm^2 2019-03-12 16:39:35,662	- INFO - INFO					
2019-03-12 16:39:35,663 +11) protons / cm^2	- INFO - Fluence row 12: (3.13E+12 +- 1.46E					
2019-03-12 16:39:37,073 2019-03-12 16:39:37,074	- INFO - INFO - INFO - Fluence row 13: (3.14E+12 +- 1.36E	0.011	0.012	0.011	0.013	0.012
+11) protons / cm^2 2019-03-12 16:39:38,475	- INFO - INFO	0.011	0.012	0.011	0.013	0.012
2019-03-12 16:39:38,477 +11) protons / cm^2	- INFO - Fluence row 14: (3.04E+12 +- 1.50E					
2019-03-12 16:39:39,886	- INFO - INFO - INFO - Eluence row 15: (3.01E+12 + 1.34E					
+11) protons / cm^2	- INFO - FIDERICE FOW 15. (5.01E+12 +- 1.34E					

5 diodes on Kapton tape in device holder, mounted in box

IRRADIATION RESULTS -FIRST IRRADIATION-

- I-V-curves of irradiated diodes:
 - Annealing for 80 min @ 60 °C, measured in climate chamber
 - Fluence increasing from 1 to 5
 - Leakage current increasing with fluence

=> Evaluation of leakage current at fulldepletion voltage V_{dep} = 91 V^{*}

*Talk by C. Simpson-Allsop at 33rd RD50 workshop @ CERN

IRRADIATION RESULTS -FIRST IRRADIATION-

- Linear relation between fluence and leakage current as expected from $\Delta I = \alpha \cdot V \cdot \Phi_{neq}$
- ...but unknown, systematic loss of beam:
 - prevents for quantitative determination of hardness factor
 - possibly due to beam optics (focussing)

=> Apart from systematic effect, irradiation procedure works

SUMMARY & OUTLOOK

- A new proton irradiation site has been developed at Bonn University
 - Devices are scanned through static beam, **homogeneous** irradiation
 - On-line beam current measurement allows to determine fluence per scan & row:
 - Beam current measured non-destructively via calibrated SEM
 - Devices are **cooled** during irradiation to minimize annealing + self-heating effects
 - First irradiation of PiN-diodes show that the procedure works as expected:
 - I-V-curves look as expected, linear behavior of leakage current with increasing fluence
 - ...but, systematic loss of beam current needs to be investigated
- New irradaition of diodes with improved beam optics within this week in order to determine correct proton hardness factor

THANK YOU

BACKUP

BEAM CURRENT MONITORING -CUSTOM READOUT ELECTRONICS-

• Input current is projected to **0** – **5** V:

$$U_{\rm OUT} = \frac{I_{\rm IN}}{R_{\rm FS}} \cdot 5 \, V \quad \Leftrightarrow \quad I_{\rm IN} = \frac{U_{\rm OUT}}{5 \, V} \cdot R_{\rm FS}$$

with $R_{FS} = 5V$ full-scale current resolution of RO electronics: $R_{FS} \in \{3.3, 10, 33, 100, 330, 1000\}$ nA

- The RO electronics have 4 input channels:
 - One for each SEM foil: I_L , I_R , I_U , I_D
- ... and 7 output voltages:
 - Raw input: U_L, U_R, U_U, U_D
 - Analog sum U_{Σ} , $U_{H/V-Shift} = U_{L/U-}U_{R/D} / U_{\Sigma}$

BEAM CURRENT CALIBRATION -MEASUREMENTS-

=> Calibration between SEM & beam current needed: I_{SEM} = const · I_{Beam}

- Measure beam current I_{Beam} versus U_{5} of the SEM and fit straight line
- Slope of fit gives proportionality constant for corresponding R_{FS}
- Check signal saturation depending on HV_{SEM} and HV_{Cup}

Setup on 22.01.19

-MEASUREMENTS HV_{SEM} @ 70V-

-MEASUREMENTS HV_{SEM} @ 100V-

۰

FLUENCE UNCERTAINTY -ESTIMATION-

Proton fluence generally given by:

$$F_{p} = \frac{I_{p} \cdot t}{q_{e} \cdot A} \qquad \begin{array}{c} I_{p} = p \\ q_{e} = e \end{array}$$

 $I_p = proton current, t = time$ $q_e = elem. charge, A = area$

 When scanning the area A=W*H in n vertical steps of size Δy with horizontal scan speed v, it follows for t:

This allows to rewrite F₂:

$$t = n \cdot \frac{W}{v_x} = \frac{H}{\Delta y} \cdot \frac{W}{v_x} = \frac{A}{\Delta y \cdot v_x}$$
$$F_p = \frac{I_p}{q_e \cdot \Delta y \cdot v_x}$$

=> Uncertainty on fluence mainly given by error on I_p measurement! ($\Delta y \& v_x$ precise in um range)

٠

FLUENCE UNCERTAINTY -ESTIMATION-

- For the beam current measurement uncertainty it follows:
 - $\Delta\lambda / \lambda \approx 0.6 \% 1.3 \%$ => Estimate worst case: **3 %**
 - $\Delta R_{_{FS}} / R_{_{FS}} \approx 1\%$
 - $\Delta U_{\Sigma} / U_{\Sigma} \approx 1\%$
- Plug-in Gaussian EP: $\Delta I_{Beam}^2 = (\Delta \lambda \cdot R_{FS} \cdot U_{\Sigma})^2 + (\lambda \cdot \Delta R_{FS} \cdot U_{\Sigma})^2 + (\lambda \cdot R_{FS} \cdot \Delta U_{\Sigma})^2$ $= (3 \% I_{Beam})^2 + (1 \% I_{Beam})^2 + (1 \% I_{Beam})^2$ $\Rightarrow \Delta I_{Beam} \approx 3.3 \% I_{Beam}$
- Due to neglecting y-intersect in calibration, we finally need to add the error of the respective R_{FS}:

$$\Delta I_{Beam} = 3.3 \% I_{Beam} + 1 \% R_{FS}$$

FLUENCE UNCERTAINTY -ESTIMATION-

- The error on I_{Beam} contains constant part => Dominates for low beam currents measured in high R_{FS} :
 - $I_{beam} = 10 \text{ nA}$, measured in $R_{FS} = 1000 \text{ nA} => \Delta I_{beam} = 0.03 * 10 \text{ nA} + 0.01 * 1000 \text{ nA} = 10.3 \text{ nA}$
- => <u>Generally one should chose $R_{\underline{rs}}$ such that $U_{\underline{rs}} \ge 1 \text{ V}$ for which follows: $\Delta I_{Beam} / I_{Beam} < 5 \%$ </u>
- Taking this into account, the proton fluence can be measured knowing the beam current as

$$F_{p} = \frac{I_{Beam}}{q_{e} \cdot \Delta y \cdot v_{x}} \quad \text{with} \quad \Delta F_{p} = \frac{\Delta I_{Beam}}{q_{e} \cdot \Delta y \cdot v_{x}}$$

with the same relative uncertainty of ΔF_p / F_p < 5%