

A PROTON IRRADIATION SITE FOR SILICON DETECTORS AT BONN UNIVERSITY

<u>P. Wolf^{1*}</u>, D. Eversheim², D.-L. Pohl¹, J. Dingfelder¹, N. Wermes¹ 35th RD50 Workshop CERN, 18.11.2019

¹Physikalisches Institut (PI) ²Helmholtz Institut für Strahlen- und Kernphysik (HISKP)

wolf@physik.uni-bonn.de

- Irradiation site
- Beam monitoring
- Irradiation procedure
- Radiation damage
- Conclusion & outlook

OUTLINE

The Bonn Isochronous Cyclotron at Helmholtz Institut für Strahlen- und Kernphysik

UNIVERSITÄT BONN BONN ISOCHRONOUS CYCLOTRON

- Electron-Cyclotron-Resonance ion source: Protons, Deuterons, Alphas, ..., ¹²C
- Cyclotron: E_{kin} from 7 MeV to 14 MeV per nucleon
- Protons @ irradiation site:
 - Beam current: few **nA** to $1 \mu A$
 - Beam profile: few $\mathbf{mm} \le \emptyset_{FWHM} \le 2 \mathbf{cm}$
 - Flux(1 μ A, Ø_{FWHM}= 1cm) \approx 8e12 p/(s·cm²)
- = Access during irradiation (DAQ equipment)

• := No access (DAQ equipment with constraints)

THE IRRADIATION SITE

- Three extraction lines under 0°, 15° and 39° w.r.t beamline for e.g. different particles
- Extraction to irradiation site under **15**°:
- FWHM_{Max}(15°) $\approx 2 \text{ cm}$
- Beam diagnostics at extraction allow online beam monitoring
- Distance irradiation setup <-> extraction = < 5 cm during irraditon

THE IRRADIATION SETUP

Cooling: irradiation in **cooling box**, N_2 gas cooling (in liquid N_2 reservoir) to prevent **annealing** effects. Temperature monitoring via NTCs at 2 positions.

Setup control & DAQ: On-site RaspberryPi (Rpi) server controls XY-stage, ADC board and reads NTCs temperatures. All data is digitized & available in institute network:

=> Easily replaceable at low cost after potential TID death

> RPi + ADC board below setup table, shielded by bricks to minimize neutron flux

UNIVERSITÄT BONN

BEAM DIAGNOSTICS

- Two different ways to monitor the beam on-site
- **Destructively,** using external *Faraday cup*: allows direct beam current measurement <u>at setup</u>, calibration measurements
- Non-destructively, using calibrated, Secondary Electron Monitor (SEM):
 - Two pairs of thin, (horizontally/vertically) segmented Al foils
 - Primary beam removes secondray e⁻ from foil surfaces
 - Removing these e^{-} with +HV: $I_{sem} = const \cdot I_{beam}$
 - => Allows online beam current and position measurement ≈ 10 cm before irradiation setup

Pascal Wolf

BEAM CURRENT CALIBRATION

Beam current calibration schematic setup

Beam current calibration actual setup

- Calibrate **sum currents** of SEM foils to absolute beam current measured in Faraday cup **at setup position**:
 - Custom R/O electronics converts all currents to voltages between 0 5 V for AD conversion
 - Different scales I_{FS} corresponding to 0 5 V selectable at R/O electronics for e.g. low or high currents
 - Calibration of I $_{_{
 m p}}$ to U $_{_{\Sigma}}$ of SEM to get $~~~~{
 m I}_{
 m p}\left({
 m U}_{\Sigma}
 ight)=\lambda\cdot{
 m I}_{
 m FS}\cdot{
 m U}_{\Sigma}$

UNIVERSITÄT BONN

BEAM CURRENT CALIBRATION

Beam current calibration at setup position Beam current calibration SEM Al under 15° for 14 MeV p 700 Linear fit: $I_{\text{Beam}}(U_{\Sigma}) = \lambda \cdot I_{\text{ES}} \cdot U_{\Sigma}$: $I_{FS} = 330 \text{ nA}$ Uncertainty on proton current ΔI_n composed of $\lambda = 4.997E - 01 \pm 5.006E - 03 V^{-1}$ • $\chi^2_{red} = 1.69$ 102 600 $\Delta I_{p} = \sqrt{(\lambda \cdot I_{FS} \cdot \Delta U_{\Sigma})^{2} + (\lambda \cdot U_{\Sigma} \cdot \Delta I_{FS})^{2} + (U_{\Sigma} \cdot I_{FS} \cdot \Delta \lambda)^{2}}$ / nA 500 External cup current l_{cup} Typically, the relative errors are • 400 $rac{\Delta\lambda}{\lambda} = rac{\Delta \mathrm{I_{FS}}}{\mathrm{I_{FS}}} = rac{\Delta \mathrm{U_{\Sigma}}}{\mathrm{U_{\Sigma}}} = 1\% \Rightarrow rac{\Delta \mathrm{I_{p}}}{\mathrm{I_{p}}} pprox 2\%$ 101 300 Proton beam on device know with relative precision of 200 ٠ approx. 2% => Reduce uncertainty on proton fluence ϕ_n 100 1.0 1.5 2.0 2.5 3.0 3.5 0.5 U₅ SEM AI / V

IRRADIATION PROCEDURE

- Achieve homogeneous irradiation by overscanning DUT area: Typically @ -20 °C, Al shield, 10x10cm² PCB, SEM-DUT = 20 cm
- Proton fluence on device per full scan $\phi_{\rm p} = rac{{f l}_{
 m p}}{{f q}_{
 m e}\cdot{f v}_{
 m x}\cdot{f \Delta}{f y}}$
- Fluence uncertainty dominated by current measurement

 $rac{\Delta \phi_{
m p}}{\phi_{
m p}} = rac{\Delta {
m I}_{
m p}}{{
m I}_{
m p}} pprox 2\%$ vs. typically 20%

- For $I_p = 1\mu A$, $v_x = 80 \text{mm/s}$, $\Delta y = 1 \text{mm}$ and $2x1xm^2$ DUT:
 - $\phi_{p} \approx 8e12 \text{ p/cm}^2 \text{ per full scan}$
 - 1e16 neq/cm² in approx. 2 hours for 4cm² DUT (see next slides)

Fluorescence screens: Relative position reference for scan on box and shield

CONTROL SOFTWARE

- GUI-based control software for data visualization and setup control from control room
- Beam properties measured with 20 Hz 200 Hz during scanning => Allows reacting to changing beam conditions
 - Autonomous stopping & resuming of scan and adapting scan parameters if needed (e.g on beam-off)

=> Greatly **increases homogeneity** of fluence over scan area

• Online monitoring of beam current- and position, proton fluence per row & temperature on-site

Contrast 1												D .	SEM C
up Control I	Monitor											F A	Raw Bean
		Setup contro	ol					Scan				5 2	Show curve(:
XY-Stage:	Home stage: Set speed:	Home axes				Step size:	1,000	1,000 mm			0	ο Ω	
		0,000 mm/s 🔅 x 👻			Set speed	Scan speed:	80,00	80,000 mm/s			0	T T	
	Move relative:	Horizontal	0,000 mm	\$	Move	Minimum scan current:	0 nA				0	2 7	
		Vertical	0,000 mm	0	Move	Aim fluence:	1,000		2 e 13 p / cm^2	!	0	6 2	
	Move absolute:	Horizontal	0,000 mm	0	Move	Relative start point:	x: 0,000	00 mm	\$ y: 0,000 mm		\$		3e+12
		Vertical	0,000 mm	0	Move	Relative end point	x: 0,0	00 mm	\$ y: 0,000 mm		0	10 10	
2 :	Zero raw data offset:		Auto-zero o	iffset		START				STOP		S T	R
						Fluence in previous row Fluence over completed	t i scans:					×E	c. 1e+12
						Fluence in previous row Fluence over completec Estimated remaining sc Scan parameters: step size: 1.0 mm s rel_end_point: (0.0, 0.0	: f scans: :ans: :can_speed: 80.0 mm/ 0) mm	s rel_start_point: (0.0	. 0.0) mm			tting irr XY-stag	a. 1e+12 0
						Fluence in previous row Fluence over completed Estimated remaining sc Scan parameters: step size: 1.0 mm s rel_end_point: (0.0, 0.1	t f scans: :ans: :can_speed: 80.0 mm/ 0) mm	s rel_start_point: (0.0	. 0.0) mm			tting irra XY-stage	a. 1e+12 0
-06-05 16:35:38 -06-05 16:36:40	8,489 - INFO - Started "Irrad 0,733 - INFO - Connecting to	_control" on Linux	20.162.129			Fluence in previous row Fluence over complete Estimated remaining sc Scan parameters: step size: 10 mm s rel_end_point: (0.0, 0.1	t d scans: ans: iccan_speed: 80.0 mm/ 0) mm	s rel_start_point: (0.0	. 0.0) mm			tting irrad XY-stage (Log 2019-03-12 16 +111 protons /
06-05 16:35:38 06-05 16:36:40 06-05 16:36:40 06-05 16:36:4	8,489 - INFO - Started "irrad 0,733 - INFO - Connecting to 1,012 - INFO - Successfully 0 0,719 - INFO - Data receiver	_control" on Linux server pi@131.21 connected to serve ready	20.162.129 r pi@131.220.162.129	91		Fluence in previous row Fluence over complete Estimated remaining sc Scan parameters: step size: 10 mm s rel_end_point: (0.0, 0.1 DAQ Info SEM_C Data rate: 18.13 Hz	t d scans: aans: ccan speed: 80.0 mm/ 0) mm	s rel_start_point: (0.0 Beam currer	. 0.0) mm st: Unit: • V	Digits: 3	•	tting irradia XY-stage cc	Log 2019-03-12 16 +11 protors/ 2019-03-12 16 +11 protors/ 2019-03-12 16 +11 protors/
-06-05 16-35:38 -06-05 16-36:40 -06-05 16-36:40 -06-05 16-36:40 -06-05 16-36:40	8,489 - INFO - Started "irrad 0,733 - INFO - Connecting to 1012 - INFO - Successfully 0,720 - INFO - Log reseiver 0,720 - INFO - Log reseiver	_control" on Linux 5 server pi@131.22 connected to server ready ready.	20.162.129 rr pi@131.220.162.129 DpenSSH 7.4p1)	9!		Fluence vice completer Fluence vice completer Estimated remaining sc Scan parameters: step size: 1.0 mm s rel_end_point: (0.0, 0.4 SEM_C Data rate: 18.13 Hz Sampling rate: 100 sps	c J scans: ans: ccan speed: 80.0 mm/ 0) mm Averages: 300 5V full-scale: 0.3	s rel_start_point: (0.0 Beam currer 3 µA -0.16 nA	.0.0) mm t: Unit: ●V ∩A	Digits: 3 Refresh every 1.0 s		tting irradiat XY-stage cor	Log 0.3.13 bit 2011.0.13 bit 2011.0.13 bit 2019.0.8.12 bit 2019.0.8.12 bit 2019.0.8.12 bit 2019.0.8.12 bit 2019.0.8.12 bit 2019.0.8.12 bit
-06-05 16:35:36 -06-05 16:36:40 -06-05 16:36:40 -06-05 16:36:40 -06-05 16:36:40 -06-05 16:36:40 -06-05 16:36:41	8 489 - INFO - Started "Irrad 0,133 - INFO - Connecting to 0,133 - INFO - Data receiver 0,719 - INFO - Data receiver 0,809 - INFO - Connected (V 0,809 - INFO - Connected (V 0,809 - INFO - Connected (V 1,134 - INFO - Connecting arch	control" on Linux 5 server pi@131.2: connected to server ready ready. collent C. collent C. n (publickey) succession 2.0. (we server fuz	20.162.129 rr pi@J31.220.162.129 openSSH_7.4p1) essful!	91		Fluence vice completer Fluence vice completer Estimated remaining sc Scan parameters: step_size: 1.0 mm s ret_end_point: (00, 0.1 SEM_C Data rate: 18.13 Hz Sampling rate: 100 sps Left / V	c f scans: ans: can, speed: 80.0 mm/ 0) mm Averages: 300 SV full-scale: 0.3 Right / V	s rel_start_point: (0.0 Beam currer 3 μA -0.16 nA Up / V	. 0.0) mm at: Unit: ● V [_ ∩ A. [_ Down / V	Digits: 3 Refresh every 1.0 s Sum / V	•	tting irradiatic XY-stage cont	Log 2019-03-12 16 +111 proton; 2019-03-12 16 +111 proton; 2019-03-12 16 +111 proton; 2019-03-12 16 2019-03-12 16 2019-03-12 16

RADIATION DAMAGE

- Calculation of proton energy on device allows to estimate *proton hardness factor* κ_p from simulations:
 - 12.2 MeV => κ_p = 2.8 3.9 depending on source
- After typical devices (for ATLAS, CMS) with 150 μm Si:
 - 11.2 MeV => κ_p = 3.0 4.3 depending on source
- Difference in κ_p at entrance / exit below 8 % for all sources => Expected hardness factor for typical devices: κ_p= 2.8 4.3

- "Standard procedure" (see [3, 4]) to measure proton hardness factor κ_{n} :
 - Irradiation of BPW34F diodes to different ϕ_{p}
 - Measure **bulk leakage current increase** per fully-depleted volume

$$rac{\Delta \mathrm{I}_{\mathrm{leak}}}{\mathrm{V}} = lpha_{\mathrm{p}} \cdot \phi_{\mathrm{p}}$$

- After **annealing** for 80 min at 60 °C and **scaling** ΔI_{leak} to 20 °C [3]

$$\kappa_{
m p}=rac{lpha_{
m p}}{lpha_{
m eq}}$$
 with $lpha_{
m eq}=(3.99\pm0.03) imes10^{-17}\,{
m A\,cm^{-1}}$ [1]

- Calculation of proton energy on device allows to estimate κ_p for particular BPW34F diodes:
 - "F" = Filter = 500 um plastic
 - 300 um Si

- Calculation of proton energy on device allows to estimate κ_p for particular BPW34F diodes:
 - "F" = Filter = 500 um plastic
 - 300 um Si
- Energy loss in plastic packaging not negligible at these energies
- $\kappa_p = 3.1 4.6$ on entry, $\kappa_p = 4.1 5.9$ on exit of Si => Approx. 20% difference, non-negligible depth dependance of damage

- Calculation of proton energy on device allows to estimate κ_p for particular BPW34F diodes:
 - "F" = Filter = 500 um plastic
 - 300 um Si
- Energy loss in plastic packaging not negligible at these energies
- $\kappa_p = 3.1 4.6$ on entry, $\kappa_p = 4.1 5.9$ on exit of Si => Approx. 20% difference, non-negligible depth dependance of damage
- Expect an *effective* κ'_p = 3.6-5.2;
 lin. interpolation as approximation

- Irradiation of BPW34F diode sets to **5** different fluences, **3** diodes per set
- I-V-curves measured @ -20 °C to avoid selfheating, evaluation at U_{dep} = (100 ± 10) V[†]
- Results:
 - Good linear relation, small variation within diode sets, y-errors dominate
 - − Measured $\kappa_p \approx 5$ for <u>BPW34F diode</u> agrees best with Akkerman et al
- Compare to results from [4] of various irradiation facilities

^TMean value from results of [3, 4] with errors including both values

- Comparison to KIT, Birmingham and CERN hardness factor measurements from [4] using BPW34F diodes:
 - Very good overall agreement
- Results show irradiation procedure is working
- **But...** using BPWF34F diode leads to increased κ_p due to high material budget
- Expected hardness factor of κ_p ≈ 4 (Akkerman et al.) for typical devices (< 300 μm Si) to be measured soon

UNIVERSITÄT BONN

CONCLUSION

- A new proton irradiation site at Bonn University has been developed and is (physically) ready for use
- Custom beam diagnostics reduce the uncertainty on the proton fluence on-device to $\ rac{\Delta \phi_{
 m p}}{\phi_{
 m p}} \leq 2\%$
- κ_p determined using BPW34F diodes in **agreement** with simulations and results from KIT, Birmingham & CERN [4]
- BPW34F diodes not optimal for precise measurement of κ_n at low energies due to plastic packaging
- Beam energy of 14 MeV is sufficient for **typical** silicon detectors (κ_{p} variation < 8/15% for 150/300 μ m)
- Use **preliminary** hardness factor of $\kappa_{p} = 4 \pm 1$ w.r.t to Akkerman et al. [5]
 - **Soon** to be measured precisely using suitable diodes to reduce uncertainty
- Irradiation up to **1e16 neq/cm²** within **2 hour** anticipated for 4cm² DUT

- Currently, 1 Bachelor, 1 Master, 1 PhD and 1 PostDoc are working on the characterization of the irradiation site
- Irradiation Si-diodes < 300 μm to determine hardness factor precisely
- Measurement of low-energy proton hardness factors
- As of now, the beam current for protons, deuterons and alphas is calibrated under 15° extraction:
 - Improve, calibration & measure hardness factor of these ions at their respective energy

THANK YOU

- [1] M.Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties, PhD thesis: Hamburg U., 1999
- [2] A. Chilingarov, *Temperature dependence of the current generated in Si bulk*, Journal of Instrumentation 8 (2013) P10003
- [3] F. Ravotti, Development and Characterisation of Radiation Monitoring Sensors for the High-Energy Physics Experiments of the CERN LHC Accelerator, Presented on 17 Nov 2006
- [4] P. Allport et al., Experimental Determination of Proton Hardness Factorsat Several Irradiation Facilities, August 2019
- [5] A. Akkerman et al., Updated NIEL calculations for estimating the damage induced by particles and γ-rays in Si and GaAs, 2001

BACKUP

THE BONN ISOCHRONOUS CYCLOTRON

BEAM CURRENT MONITORING -PRECISION-

- Testing of electronics with sourced currents:
 - Source into different channels: L, R, O, U
- Deviation between sourced current and output
 ≈ 1 %

BEAM CURRENT MONITORING -PRECISION-

- Testing of electronics with sourced currents:
 - Source into different channels: L, R, O, U
- Deviation between sourced current and output
 ≈ 1 %

BEAM CURRENT MONITORING -SEMS & READOUT ELECTRONICS-

- Secondary current range: $\mathbf{nA} \leq \mathbf{I}_{SEM} \leq \boldsymbol{\mu}A$
 - Custom RO electronics developed and tested
 - Conversion & projection of I_{SEM} to 0 5 V
 - Selectable resolutions from 3 nA to $1 \mu A$
 - Approx. 1% uncertainty on I_{SEM} measurement
 - Readout via
 RPi & 8-Ch.
 ADDA board

BEAM CURRENT CALIBRATION

• Calibration $R_{FS} = 1000 \text{ nA}$:

 $\lambda = (838.12 \pm 0.24) \times 10^{-3} \frac{1}{V}$

- Realiability needs to verified
- Measurement repeated several times for different R_{FS}:
 - => λ_{std} / λ_{mean} <= 1.5%
- Calibration model $I_{Beam} \propto U_{\Sigma}$:
 - Linear fit shows offset b != 0
 - => Offset due to 1% precision of R_{FS}

UNIVERSITÄT BONN

IRRADIATION PROCEDURE -PROTON FLUENCE-

- Proton fluence: $\phi_{p} = \frac{I_{p} \cdot t}{q_{e} \cdot A}$ I_{p} = proton current, t = time, q_{e} = elem. charge, A = area
- **Homogeneous** irradiation of A desired:
 - Row-wise scanning of area A with step size speed v_x allows to rewrite t:

$$t = n \cdot \frac{W}{v_x} = \frac{H}{\Delta y} \cdot \frac{W}{v_x} = \frac{A}{\Delta y \cdot v_x}$$

• Proton fluence per unit area **A** now given as:

$$\phi_{\mathrm{p}} = rac{\mathbf{I}_{\mathrm{p}}}{\mathbf{q}_{\mathrm{e}}\cdot\mathbf{v}_{\mathrm{x}}\cdot\Delta\mathbf{y}}$$

TEMPERATURE SCALING

- Annealing for 80 min @ 60 °C
- Measured in climate chamber using Keithley 2450 SourceMeter
- Leakage scaled to 20 °C by

$$\begin{split} I_{leak} \propto T^2 \cdot \exp\left(-\frac{E_{eff}}{2 \cdot T \cdot k_B}\right) \\ \text{with E}_{_{eff}} \text{= (1.214 \pm 0.014) eV [2]} \end{split}$$

• Evaluation of leakage current at fulldepletion voltage U_{dep} = (100 ± 10) V [3, 4]

GEANT4 ENERGY SIMULATIONS -PROTONS 39° EXTRACTION-

- 10⁷ protons with 14 MeV along beam line
- Energy distributions on and after 300 μm Si-sensor
- Hardness factor
 - κ≈ 3 4 (?)
 - (Slight) dependence of damage function on penetration depth (?)

EFFECTIVE HARDNESS FACTOR

 Thick devices see effective hardness factor κ_p at low energies

 dE_{p}

$$rac{\Delta \mathbf{I}_{ ext{leak}}}{\mathrm{V}} = \kappa_{\mathrm{p}} \cdot lpha_{\mathrm{eq}} \cdot \phi_{\mathrm{p}}$$

$$egin{aligned} rac{\mathbf{I}_{ ext{leak}}}{\mathrm{V}} &= lpha_{ ext{eq}} \cdot \phi_{ ext{p}} \int_{\mathrm{E}_{ ext{p}}^{ ext{in}}}^{\mathrm{E}_{ ext{p}}^{ ext{out}}} \kappa_{ ext{p}} \left(\mathrm{E}_{ ext{p}}
ight) \ &= lpha_{ ext{eq}} \cdot \phi_{ ext{p}} \cdot \kappa_{ ext{p}}' \end{aligned}$$

• κ_{p} corresponds to same integrated, **but constant** damage => That's what ⁰ one measures via ΔI_{leak}

 Δ

- Irradiation of BPW34F diode sets to **5** different fluences, **3** diodes per set
- I-V-curves measured @ -20 °C to avoid selfheating, evaluation at $U_{dep} = (100 \pm 10) V^{\dagger}$
- Results:
 - Good linear relation
 - Small variation within diodes of same fluence
 - − Expected hardness factor of $\kappa_p \approx 5$ for particular BPW34F didode
 - Compare to KIT...

^TMean value from results of [3, 4] with errors including both values

- Irradiation of BPW34F diode sets to **5** different fluences, **3** diodes per set
- I-V-curves measured @ -20 °C to avoid selfheating, evaluation at $U_{dep} = (100 \pm 10) V^{\dagger}$
- Results:
 - Good linear relation, small variation within diode sets, y-errors dominate
 - − Measured $\kappa_p \approx 5$ for <u>BPW34F diode</u> agrees best with Akkerman et al
 - Compare to KIT... in agreement!

But!.. not the expected hardness factor of $\kappa_p \approx 4$ (Akkermanet al.) for **typical** devices (< 300 µm Si)

Figure 9. I–V curves fit with a first order polynomial. (a) Unirradiated diode; (b) Following irradiation at $(1.56 \pm 0.34) \times 10^{11}$ pcm⁻² and thermal annealing.

Figure 10. Change in leakage current as a function of proton fluence for BPW34F photodiodes irradiated at (a) the MC40 cyclotron; (b) the Irradiation Center Karlsruhe; and (c) at the IRRAD proton facility; (d) FZ pad diodes irradiated at the IRRAD proton facility.