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OUTLINE

The Bonn Isochronous Cyclotron at Helmholtz Institut für 
Strahlen- und Kernphysik
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BONN ISOCHRONOUS CYCLOTRON

Experiment-Hall

Cyclotron-Bunker

Restricted
area

5 m

Dipol magnets:

A1
A2
A3
A4

ECR ion source Isochronous 
cyclotron

High-current room

● Electron-Cyclotron-Resonance ion source: 
Protons, Deuterons, Alphas, …, 12C

● Cyclotron:                                                                   
E

kin
 from 7 MeV to 14 MeV per nucleon

● Protons @ irradiation site:

– Beam current: few nA to 1 μA

– Beam profile: few mm ≤ Ø
FWHM

 ≤ 2 cm

– Flux(1 μA, Ø
FWHM

= 1cm) ≈ 8e12 p/(s·cm2)

● := Access during irradiation (DAQ equipment)

● := No access (DAQ equipment with constraints)

Irradiation site
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● Three extraction lines under 0°, 15° and 39° w.r.t 
beamline for e.g. different particles

● Extraction to irradiation site under 15°:

● FWHM
Max

(15°) ≈ 2 cm

● Beam diagnostics at extraction allow online beam 
monitoring

● Distance irradiation setup <-> extraction = < 5 cm 
during irraditon

Beam Beam 
pipespipes

39°39°

15°15°

0°0°

Readout Readout 
electronicselectronics

Beam monitorBeam monitor
(SEM)(SEM)

THE IRRADIATION SITE
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THE IRRADIATION SETUP

Cooling: irradiation in cooling box, N
2
 gas 

cooling (in liquid N
2 
reservoir) to prevent 

annealing effects. Temperature monitoring 
via NTCs at 2 positions.

Setup control & DAQ:
On-site RaspberryPi (Rpi) 
server controls XY-stage, 
ADC board and reads 
NTCs temperatures. All 
data is digitized & 
available in institute 
network: 

=> Easily replaceable at 
low cost after potential 
TID death

RPi + ADC board 
below setup table, 

shielded by bricks to 
minimize neutron flux
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● Two different ways to monitor the beam on-site

● Destructively, using external Faraday cup: allows direct beam 
current measurement at setup, calibration measurements

● Non-destructively, using calibrated, Secondary Electron Monitor 
(SEM):

– Two pairs of thin, (horizontally/vertically) segmented Al foils

– Primary beam removes secondray e- from foil surfaces

– Removing these e- with +HV: I
SEM 
=  const · I

beam

● => Allows online beam current and position measurement ≈ 10 
cm before irradiation setup

 

BEAM DIAGNOSTICS

+HV

I
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● Calibrate sum currents of SEM foils to absolute beam current measured in Faraday cup at setup position:

– Custom R/O electronics converts all currents to voltages between 0 – 5 V for AD conversion

– Different scales I
FS

 corresponding to 0 – 5 V  selectable at R/O electronics for e.g. low or high currents

– Calibration of I
p
 to U

∑
 of SEM to get 

 

BEAM CURRENT CALIBRATION
+HV

SEM

Cup
I U

R/O 
electronics

RPi

SEM 
foils

Beam

-HV
Cup

Beam current calibration actual setupBeam current calibration schematic setup
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BEAM CURRENT CALIBRATION
● Beam current calibration at setup position

● Uncertainty on proton current ∆I
p
 composed of

● Typically, the relative errors are

● Proton beam on device know with relative precision of 
approx. 2% => Reduce uncertainty on proton fluence φ

p
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IRRADIATION PROCEDURE
● Achieve homogeneous irradiation by overscanning DUT area: 

Typically @ -20 °C, Al shield, 10x10cm² PCB,  SEM-DUT = 20 cm

● Proton fluence on device per full scan

● Fluence uncertainty dominated by current measurement

                                                             vs. typically 20%

● For I
p
=1μA, v

x
=80mm/s, Δy=1mm and 2x1xm² DUT:

– φ
p
≈8e12 p/cm² per full scan

– 1e16 neq/cm² in approx. 2 hours                                                
for 4cm² DUT (see next slides)

19 cm

1
1

 c
m

Fluorescence screens:
Relative position reference 
for scan on box and shield
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CONTROL SOFTWARE
● GUI-based control software for data visualization and setup control from control room

● Beam properties measured with 20 Hz - 200 Hz  during scanning => Allows reacting to changing beam conditions

– Autonomous stopping & resuming of scan and adapting scan parameters if needed (e.g on beam-off) 

=> Greatly increases homogeneity of fluence over scan area

● Online monitoring of beam current- and position, proton fluence per row & temperature on-site P
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RADIATION DAMAGE
D

.-L. Po
h

l

● Calculation of proton energy on 
device allows to estimate proton 
hardness factor κ

p
 from simulations:

– 12.2 MeV => κ
p
= 2.8 – 3.9 

depending on source

● After typical devices (for ATLAS, 
CMS) with 150 μm Si:

– 11.2 MeV => κ
p
= 3.0 – 4.3 

depending on source

● Difference in κ
p
 at entrance / exit 

below 8 % for all sources => 
Expected hardness factor for typical 
devices: κ

p
= 2.8 – 4.3
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PROTON HARDNESS FACTOR
● „Standard procedure“ (see [3, 4]) to measure proton hardness factor κ

p
:

– Irradiation of BPW34F diodes to different φ
p

– Measure bulk leakage current increase per fully-depleted volume

– After annealing for 80 min at 60 °C and scaling ΔI
leak

 to 20 °C [3]

with                                                                                         [1]

B
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PROTON HARDNESS FACTOR
● Calculation of proton energy on 

device allows to estimate κ
p
 for 

particular BPW34F diodes:

– “F“ = Filter = 500 um plastic

– 300 um Si

 D
.-L. Po

h
l

1
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PROTON HARDNESS FACTOR
D
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h
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● Calculation of proton energy on 
device allows to estimate κ

p
 for 

particular BPW34F diodes:

– “F“ = Filter = 500 um plastic

– 300 um Si

● Energy loss in plastic packaging not 
negligible at these energies

● κ
p
= 3.1 – 4.6 on entry, κ

p
= 4.1 – 5.9 

on exit of Si => Approx. 20% 
difference, non-negligible depth 
dependance of damage
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PROTON HARDNESS FACTOR
D

.-L. Po
h
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● Calculation of proton energy on 
device allows to estimate κ

p
 for 

particular BPW34F diodes:

– “F“ = Filter = 500 um plastic

– 300 um Si

● Energy loss in plastic packaging not 
negligible at these energies

● κ
p
= 3.1 – 4.6 on entry, κ

p
= 4.1 – 5.9 

on exit of Si => Approx. 20% 
difference, non-negligible depth 
dependance of damage

● Expect an effective κ'
p
 = 3.6-5.2;     

lin. interpolation as approximation
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PROTON HARDNESS FACTOR
● Irradiation of BPW34F diode sets to 5 

different fluences, 3 diodes per set

● I-V-curves measured @ -20 °C to avoid self-

heating, evaluation at U
dep

= (100 ± 10) V†

● Results:

– Good linear relation, small variation 
within diode sets, y-errors dominate

– Measured κ
p
 ≈ 5 for BPW34F diode 

agrees best with Akkerman et al

● Compare to results from [4] of various 
irradiation facilities

†
Mean value from results of [3, 4] with errors including both values
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PROTON HARDNESS FACTOR
● Comparison to KIT, Birmingham and CERN 

hardness factor measurements from [4] using 
BPW34F diodes:

– Very good overall agreement

● Results show irradiation procedure is working

● But… using BPWF34F diode leads to increased 
κ

p
 due to high material budget

● Expected hardness factor of κ
p
 ≈ 4 (Akkerman 

et al.) for typical devices (< 300 μm Si) to be 
measured soon
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CONCLUSION
● A new proton irradiation site at Bonn University has been developed and is (physically) ready for use

● Custom beam diagnostics reduce the uncertainty on the proton fluence on-device to

● κ
p
 determined using BPW34F diodes in agreement with simulations and results from KIT, Birmingham & CERN [4]

● BPW34F diodes not optimal for precise measurement of κ
p
 at low energies due to plastic packaging

● Beam energy of 14 MeV is sufficient for typical silicon detectors (κ
p
 variation < 8/15% for 150/300 μm) 

● Use preliminary hardness factor of  κ
p 
= 4 ± 1 w.r.t to Akkerman et al. [5]

– Soon to be measured precisely using suitable diodes to reduce uncertainty

● Irradiation up to 1e16 neq/cm² within 2 hour anticipated for 4cm² DUT
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OUTLOOK
● Currently, 1 Bachelor, 1 Master, 1 PhD and 1 PostDoc are working on the characterization of the irradiation site

● Irradiation Si-diodes < 300 μm to determine hardness factor precisely

● Measurement of low-energy proton hardness factors

● As of now, the beam current for protons, deuterons and alphas is calibrated under 15° extraction:

– Improve, calibration & measure hardness factor of these ions at their respective energy

Protons (14 MeV)             Deuterons (28 Mev)                 Alphas (56 MeV)
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THE BONN ISOCHRONOUS 
CYCLOTRON
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● Testing of electronics with sourced currents:

– Source into different channels: L, R, O , U

●  Deviation between sourced current and output 
≈ 1 %

 

BEAM CURRENT MONITORING
-PRECISION-
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● Testing of electronics with sourced currents:

– Source into different channels: L, R, O , U

●  Deviation between sourced current and output 
≈ 1 %

 

BEAM CURRENT MONITORING
-PRECISION-
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● Secondary current range: nA ≤ I
SEM

 ≤ µA

– Custom RO electronics developed and tested

– Conversion & projection of I
SEM

 to 0 – 5 V

– Selectable resolutions from 3 nA to 1 µA

– Approx. 1% uncertainty on I
SEM

 measurement

– Readout via 

RPi & 8-Ch. 

ADDA board

 

BEAM CURRENT MONITORING
-SEMs & READOUT ELECTRONICS-

  SEM (Al)SEM (Al)

  RO ElectronicsRO Electronics  Rpi+ADDA boardRpi+ADDA board

 Stack  StackStack
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BEAM CURRENT CALIBRATION

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
U  / V

50

100

150

200

250

300

I be
am

 / 
nA

IFS = 1 A, HVSEM = 100 V
Linear fit: f(x) = ax + b
        a = (8.375E + 02 ± 2.623E 01)nA

V
        b = ( 9.221E + 00 ± 5.845E 02) nA
        2

red = 0.16

100

101

102

103● Calibration R
FS

 = 1000 nA:

● Realiability needs to verified

● Measurement repeated several times for different 
R

FS
:

=> λ
std

 / λ
mean

 <= 1.5%

● Calibration model I
Beam

  U∝
∑ 
:

– Linear fit shows offset b != 0 

=> Offset due to 1% precision of R
FS
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IRRADIATION PROCEDURE
-PROTON FLUENCE-

Area  A

Δy

Sample

H

W

● Proton fluence:                                          I
p
 = proton current, t = time, q

e
 = elem. charge, A = area

● Homogeneous irradiation of A desired:

– Row-wise scanning of area A with step size                                                                                            Δy and scan 
speed v

x 
allows to rewrite t:

● Proton fluence per unit area A now given as:

φ
p
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TEMPERATURE SCALING
● Annealing for 80 min @ 60 °C

● Measured in climate chamber using 
Keithley 2450 SourceMeter

● Leakage scaled to 20 °C by

with E
eff

 = (1.214 ± 0.014) eV [2]

● Evaluation of leakage current at full-
depletion voltage U

dep
= (100 ± 10) V [3, 4]
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GEANT4 ENERGY SIMULATIONS
-PROTONS 39° EXTRACTION-

● 107 protons with 14 MeV 
along beam line

● Energy distributions on and 
after 300 µm Si-sensor

● Hardness factor

–  κ ≈ 3 - 4 (?)

– (Slight) dependence of 
damage function on 
penetration depth (?) 

On sensor

After 300 μm Si-sensor
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EFFECTIVE HARDNESS FACTOR
● Thick devices see effective hardness 

factor κ'
p 
at low energies

● κ'
p 
corresponds to same integrated, 

but constant damage => That‘s what 
one measures via ΔI

leak
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PROTON HARDNESS FACTOR
● Irradiation of BPW34F diode sets to 5 

different fluences, 3 diodes per set

● I-V-curves measured @ -20 °C to avoid self-

heating, evaluation at U
dep

= (100 ± 10) V†

● Results:

– Good linear relation

– Small variation within diodes of 
same fluence

– Expected hardness factor of κ
p
 ≈ 5 for 

particular BPW34F didode

– Compare to KIT...

†
Mean value from results of [3, 4] with errors including both values
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PROTON HARDNESS FACTOR
● Irradiation of BPW34F diode sets to 5 

different fluences, 3 diodes per set

● I-V-curves measured @ -20 °C to avoid self-

heating, evaluation at U
dep

= (100 ± 10) V†

● Results:

– Good linear relation, small variation 
within diode sets, y-errors dominate

– Measured κ
p
 ≈ 5 for BPW34F diode 

agrees best with Akkerman et al

– Compare to KIT… in agreement!

†
Mean value from results of [3, 4] with errors including both values

But!.. not the expected hardness factor of κ
p
 ≈ 4 

(Akkermanet al.) for typical devices (< 300 μm Si)
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I-V-CURVES BPW34F [4]
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PROTON HARDNESS FACTORS [4]
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PROTON HARDNESS FACTORS [4]
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