Proton Irradiation Site for Si-Detectors at the Bonn Isochronous Cyclotron

```
Dennis Sauerland<sup>1</sup>, R. Beck<sup>1</sup>, J. Dingfelder<sup>2</sup>,
P.-D. Eversheim<sup>1</sup>, P. Wolf<sup>2</sup>
```

March 30th, 2022

🖂 sauerland@hiskp.uni-bonn.de

¹Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn
 ²Silizium Labor Bonn (SiLab), Physikalisches Institut, Universität Bonn

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn - Cyclotron

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn

Cyclotron Facility in Bonn - Neutron Beam Line (planned)

Cyclotron Facility in Bonn - Proton Beam Line

Irradiation Site

Irradiation Site

Necessities for **Homogeneous** Proton Fluence:

- Beam position diagnostic
- Online, non-destructive beam current measurement
- Beam-driven irradiation scheme

Irradiation Site - Beam Monitor

Irradiation Site - Beam Monitor

Irradiation Site - Beam Monitor (SEM)

Irradiation Site - Beam Monitor (SEM)

• Use carbon-coated Al foils (≈ 70 nm layer thickness) to anticipate foil-carbonization with time.

Irradiation Site - Beam Monitor (SEM)

• Use carbon-coated Al foils ($\approx 70 \text{ nm}$ layer thickness) to anticipate foil-carbonization with time.

Irradiation Site - Beam Monitor (BLM)

Irradiation Site - Beam Monitor (BLM)

- Charge collection efficiency of internal FARADAY cup: > 99 %
- Isolator electrode prevents secondary electrons from exit window to reach BLM.

• Charge collection efficiency of FARADAY cup: > 99.9 %, $\left(\frac{I_{loss}}{I} \approx 1 \cdot 10^{-6}\right)$

Irradiation Site - Chromox Screen

Irradiation Site - Irradiation Procedure

Thank you for your attention!

irrad_control software: • www.github.com/SiLab-Bonn/irrad_control

Appendix: Real Stuff

Appendix: Real Stuff

Appendix: Real Stuff

Appendix: ECR-Source

Appendix: ECR-Source

Electron Cyclotron Resonance Source:

- Two stage ECR source where electromagnetically confined plasma is heated by 5 GHz RF and ionizes injected gas.
- Extraction by HV electrodes provides a *p*, *d* or α particle beam of 4 to 8 keV.
- Additional ECR source for polarized *p* or *d* beam below the cyclotron.

0m 1m 2m 3m

Appendix: High Current Site

